Generalized convolution quadrature based on Runge-Kutta methods
نویسندگان
چکیده
Convolution equations for time and space-time problems have many important applications, e.g., for the modelling of wave or heat propagation via ordinary and partial differential equations as well as for the corresponding integral equation formulations. For their discretization, the convolution quadrature (CQ) has been developed since the late 1980’s and is now one of the most popular method in this field. However, the method and the theory are restricted to constant time stepping and only recently the implicit Euler generalized convolution quadrature (gCQ) has been developed which allows for variable time stepping. In this paper, we develop the gCQ for Runge-Kutta methods with variable time stepping and present the corresponding stability and convergence analysis. For this purpose, some new theoretical tools such as tensorial divided differences, summation by parts with Runge-Kutta differences and a calculus for Runge-Kutta discretizations of generalized convolution operators such as an associativity property will be developed in this paper. Numerical examples will illustrate the stable and efficient behavior of the resulting discretization.
منابع مشابه
Runge-Kutta convolution quadrature for operators arising in wave propagation
An error analysis of Runge-Kutta convolution quadrature is presented for a class of nonsectorial operators whose Laplace transform satisfies, besides the standard assumptions of analyticity in a half-plane Re s > σ0 and a polynomial bound O(s 1) there, the stronger polynomial bound O(s2) in convex sectors of the form | arg s| ≤ π/2 − θ < π/2 for θ > 0. The order of convergence of the Runge-Kutt...
متن کاملAn error analysis of Runge-Kutta convolution quadrature
An error analysis is given for convolution quadratures based on strongly A-stable RungeKutta methods, for the non-sectorial case of a convolution kernel with a Laplace transform that is polynomially bounded in a half-plane. The order of approximation depends on the classical order and stage order of the Runge-Kutta method and on the growth exponent of the Laplace transform. Numerical experiment...
متن کاملRunge-kutta Methods for Parabolic Equations and Convolution Quadrature
We study the approximation properties of Runge-Kutta time discretizations of linear and semilinear parabolic equations, including incompressible Navier-Stokes equations. We derive asymptotically sharp error bounds and relate the temporal order of convergence, which is generally noninteger, to spatial regularity and the type of boundary conditions. The analysis relies on an interpretation of Run...
متن کاملFast convolution quadrature based impedance boundary conditions
We consider an eddy current problem in time-domain relying on impedance boundary conditions on the surface of the conductor(s). We pursue its full discretization comprising (i) a finite element Galerkin discretization by means of lowest order edge elements in space, and (ii) temporal discretization based on Runge-Kutta convolution quadrature (CQ) for the resulting Volterra integral equation in ...
متن کاملFast convolution quadrature for the wave equation in three dimensions
This work addresses the numerical solution of time-domain boundary integral equations arising from acoustic and electromagnetic scattering in three dimensions. The semidiscretization of the time-domain boundary integral equations by Runge-Kutta convolution quadrature leads to a lower triangular Toeplitz system of size N . This system can be solved recursively in an almost linear time (O(N logN)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 133 شماره
صفحات -
تاریخ انتشار 2016